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Abstract--A previous generalization of the Percus-Yevick (PY) and hyper- 
netted chain (HNC) equations for simple fluids, involving a density- and 
temperature-dependent coefficient m, is extended by including a spatial 
dependence in rn. The new approximation yields an exact fourth virial 
coefficient and, by further requirement, a consistent equation of state from 
both the virial and compressibility forms. Comparison of calculated results 
for the hard sphere potential shows an improvement over the PY, HNC, and 
previous pressure-consistent equations. 

1. Introduction 
As a consequence of the assumption that molecules of a fluid 
interact through two-body forces, the pair distribution function of 
a fluid plays a central role in the theoretical calculation of the fluid 
bulk properties. From a knowledge of the intermolecular potential 
q(r )  and the resulting pair distribution function g(r), for example, 
the internal energy, pressure, and isothermal compressibility of a 
sample in equilibrium can be immediately obtained by simple 
quadratures. ( l )  

m 

= Q + g p p  / 'p(r)g(r)4nr* dr, 

@ = 1 - &$?/o r d d r )  g(r)4mB dr, 

N 0 

P 

Here C(P)  ia the direct correlation function, p is the number density 
N / V ,  and f i  is (kT)-'. Furthermore, the liquid structure factor 
directly measured by X-ray and neutron scattering is obtainable as 
the Fourier transform of g(r) .  
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80 F. L A D 0  AND SHU-HSIA CHEN 

This quality of immediate usefulness has motivated an intensive 
and, at  least for simple fluids, quite successful search for practical 
methods of determining g(r), given the pair potential q(r )  ; this paper 
is concerned with a simple extension of some of these equations. In  
the following paragraphs, we briefly outline the principle routes to 
approximate equations for g(r)  in use today. 

An early approach was based on an exact hierarchy of equations 
relating the n-body distribution function gn to the (n+l)-body 
function gncl.(l) In particular, g = ge is connected to g8 and if, 
in order to obtain an equation with a single unknown, g, is repre- 
sented by the superposition approximation, the Yvon-Born-Green 
equation(lS2) for g results. This equation has fared poorly in 
numerical comparisons with others to be mentioned below. Some 
improvement has been made, however, by adding correction terms 
to the superposition approximation. (3) 

A secoild avenue of approach is based on an expansion of g(r) in 
powers of the density.(4) A study of the coeficients of this expansion 
showed that many terms could be summed into compact forms, 
culminating, in a remarkable sequence of papers, in the hypernetted 
chain (HNC) equation, proposed independently hy several authors.(6) 
The Percus-Yevick (PY) equation, though originally obtained by an 
entirely Werent method,@) can best be understood in terms of the 
same series expansion. (') A significant limitation of this approach 
is that, having achieved these notable successes, it provides little 
practical guidance on how these approximate results may be 
systematically improved. 

Partly in order to circumvent this difficulty, a third general 
approach@) has more recently been developed, based on fimctional 
Taylor expansions. These suffer from an inherent arbitrariness, in 
that the functional to be expanded and the function it is expanded 
in are essentially arbitrary choices, However, by taking the known 
equations as guides, systematic expansions yielding correction terms 
to these have been obtained.@) The diffmdty with these corrections 
is that they again involve the three-particle function g,, requiring 
additional approximations to reduce the set of equations to a single 
unknown. The practical task of determining g(r) becomes quite 
involved. (9) 

All of the above formulations lead to non-linear integral equations 
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PRESSURE-CONSISTENT EQUATION 81 

for g which must be solved numerically. There is a fourth, more 
direct approach to the calculation of y, based on mathematical 
simulation of the physical system, namely, the Monte Carlo(l0) (MC) 
and molecular dynarnics(l1) (MD) techniques. These require a 
large-scale computing effort, but when the integral equations become 
excessively difficult to solve, they offer an attractive alternative, in 
that they are free of all uncontrolled approximations and are, in a 
certain sense, exact. 

One of the advantages of the PY and HNC equations, then, is 
that they yield relatively good results with a comparatively modest 
amount of computational effort. In seeking to improve on these 
equations, i t  seems desirable to retain as much of this advantage as 
possible, since an excessively complicated equation will begin to 
compete, computationally, with the MC and MD “computer 
experiments” and hence may not, in practical terms, be worth 

The approximate integral equation for g proposed in Sec. 2 is 
governed by this consideration. It is obtained in the context of the 
density expansion for g and extends an approach shown to be useful 
in previous p~blications.(’~-~*) Hard sphere results obtained from 
this equation are presented in Secs. 3 and 4. 

solving. t 

2. Extended Pressure-Consistent Equation 

A summary of some well-known results is helpful in motivating 
the desired approximation. In  canonical ensemble formalism, the 
pair distribution function g is defined by 

where 

z = j . . . jdrl.. .drNexP( -BE icil Pli) 

and where ‘pi, = rp(rij) is the interaction potential between molecules 

t There are, of course, other criteria to be considered in judging the integral 
equations. Besides their contributions to a general theory of fluids, they offer, 
e.g., the possibility of determining experimental intermolecular potentials 
from measured scattering factors. 
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82 F.  L A D 0  AND S H U - H S I A  CHEN 

i andj .  
f- functions 

(6) 

then leads to a power series in density for g(r) which is the point of 
departure for all approximations to g based on diagram techniques. 
By classifying the coefficients of this expansion according to the 
properties of the associated diagrams, one writes(l) 

(7) 

where S, P, and B are the sums of the series, parallel, and bridge 
diagrams, respectively. The expansions of these functions, through 

Expansion of the integrand in (4) in products of Mayer 

f ( r )  = e-flp(r) - 1 

g(r) e f l P ( 7 )  = 1 + S(r) -+ P(r) + B(r), 

B(r) = $p’[ c@] + ... 
Figure 1. 
diagrams, through second order. 

Density expansions o f  the series, parallel, and bridge sets of 

terms of second order in the density, are shown in Fig. 1 in the usual 
diagram notation. In addition, one defines a direct correlation 
function C(r)  by the relation 

( 8 )  

= C(r) + S(r). (9) 

G(r)  E g(r) - 1 

Because diagrams of the series type can be factored in Fourier 
transform space, while those of the parallel type can be factored in 
direct space, both the series S and P can be summed into simple 
functionals of g. These are(1) 

~ ( r )  = p J c(r!)G(l r - r! 1) dr’ (10) 

(11) 
and 

P(T) = g(r) eflC(7) - 1 -In b(.) eflq(*)]. 
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PRESSURE-CONSISTENT EQUATION 83 

Equations (9) and (10) constitute the Ornstein-Zernike equation 

G(r )  = C(r )  + p C(r’)G( I r - r‘ I )  dr’, S 
which yields G when C is known, while from (7) and (9) it  follows 
that 

C = f( 1 + 8 + P + B) +P + B  (13) 

= gePQf + P + B  (14) 

=G-lnge@Q+B, (15) 

where the last equality is a consequence of (11). It is apparently 
not possible to express B as a simple functional of g, so that a closed 
set of equations is not achieved and approximations for B must be 
introduced. Among other things, this leads to inconsistent values 
of the equation of state as obtained from Eqs. (2) and (3). 

The best known of these approximations are the PY and HNC 
equations, which are obtained by putting, respectively, 

R(r) = -P(r )  (PY) (16) 

B(r) = 0. (Hw (17) 

C = gef’qf (PY) (18) 

C = G -1ngePQ. (HNC) (19) 

The corresponding direct correlation functions are then 

The fact that the PY equation, despite its neglect of an additional 
set of diagrams, leads to results that are generally superior to those 
of the HNC equation suggests that a partial cancellation occurs 
among the diagrams such that P + B is more nearly negligible than 
B alone. 

We now consider a generalization of these cases that may more 
accurately represent the small correction P + B while still retaining 
the basic computational simplicity of the above equations. Define 
the ratio 

so that the direct correlation function is now written 

C = G + m ( g e P q - l ) - ( l + m ) l n g e a Q .  (21) 
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84 F .  L A D 0  AND SEW-HSIA CEEN 

In  this form, the PY and HNC equations result from the choice 
m(r) = - 1 and m(r) = 0, respectively. Other possibilities may now 
be explored, however. For example, a choice of m with no functional 
dependence on r but designed to yield a consistent value for the 
pressure from both Eqs. (2) and (3) leads to a significant improve- 
ment over the PY and HNC equations for hard ~ p h e r e s . ( ~ ~ J ~ )  This 
approximation, previously called pressure-consistent (PC), can in 
turn be easily extended to include a spatial dependence for m(r), as 
will now be shown. 

Write the density expansions of P and B in the form 

so that the exact m(r)  is written 

More genemlly, the expansion of m(r) may be written 

where 

or, in diagram notation, 

and where 
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PRESSURE-CONSISTENT EQUATION 85 

for k > 1 .  Clearly, the expansion (251, though formally exact, is of 
no direct utility since the coefficients crk(r) are not readily obtainable. 
The approximation we propose consists in simply neglecting the 
r-dependence of these coefficients, thus letting mo(r) approximate 
the entire spatial dependence of m(r), and determining the now- 
constant coefficients aB by requiring consistency in the equation of 
state as calculated from (2) and (3). It is worthwhile noting that 
this approximation represents B(r) as a particular infinite series and 
is not a t  all analogous to the straightforward extension of the HNC 
equation obtained by approximating B(r) by pzBz(r), rather than 
zero. 

There remains the problem of determining the integrals in mo(r). 
For hard spheres, analytic evaluations of these diagrams are already 
available in the literature.(l6) In general, however, these integrals 
will need to be evaluated numerically, using Fourier transforms for 
P2(r) and Monte Carlo integration for B,(r), for example. It will, of 
course, be necessary to perform these calculations only once for each 
isotherm studied. 

3. Virial Expansion for Hard Spheres 

When the exact density expansions of g and C are used in (2) and 
(3), respectively, both equations yield the same virial expansion for 
the pressure of the fluid, 

a consistency that is lost when approximations are introduced. The 
PY and HNC equations, for example, become internally inconsistent 
in this sense at the fourth virial coefficient D. 

With the approximation 
00 

m(r) =?AT) 1 + c pk% ? (30) { E = l  } 
the fourth virial coefficient is exact and the remaining coefficients 
can be made consistent, though approximate. The first few such 
coefficients can be readily calculated for the hard sphere model, 
where the diagrams needed for mo(r) have been analytically 
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86 F. L A D 0  AND SHU-HSIA CHEN 

evaluated.(16) Many of the virial diagrams required for this caleu- 
lation are also available in the likratture.(l') Those not already 
available were computed, either analytimlly or numerically, and are 
listed in Table 1 with their numerical values. 

TABLE 1 Additional Virial Diagrams Needed for the Calculation of the Fifth 
Virial Coefficient of Hard Spheres Using the Approximation of Eq. (30). 
Solid lines denotef(r), dashed lines rf'(r), and wavy lines m,,(r). The first four 
diagrams were evaluated analytically, the last four sets numerically. b is 
$wcrS. 

6 = 2.95370b4 

@ = -1 .85692b4 

@ = 0,96303 b4, 

= -1.18772 b" 

6 + = 1.13068b4 

f@ + @ = -0.56613 b4 

@ + @ = 0.22122 b4 

f& + 6 = 0.72605b4 

The hard sphere mo(r) is pictured in Fig. 2, from which one sees 
that mo(r) takes on the PY value of - 1 for r /u  2 J3 ,  where u is the 
hard sphere diameter. (Actually, mo(r) for this potential becomes 
undefined for r / u  > 2, since both numerator and denominator of 
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PRESSURE-CONSISTENT EQUATION 87 

0 1 .o t-10 2 .o 
Figure 2. The function m&) for hard spheres of diameter u. 

(27) vanish. We have extrapolated the value - 1  which holds 
between r/o = J3 and r /a  = 2 to  define mo(r) for values of r / o  
greater than 2.) Given this property of mo(r), it is clear that in the 
present approximation, the sum 

(31) 
will be a relatively weak correction to the PY form of the direct 
correlation function, as expected. Note, however, that C will no 
longer vanish for values of r greater than a hard sphere diameter, as 
it does in the PY approximation. 

With the numerical values of the required diagrams in hand, it is a 
straightforward, though increasingly tedious, task to determine the 
constant coefficients ak required for pressure consistency. We have 
evaluated, under this condition, the first coefficient ul, which givea 

P(r)  + B(r) = [ 1 + m(r)]P(r) 

m(r) = mo(r){l -0.1123bp+ . a * }  (32) 
for hard spheres, where b = 37r03. This is sufficient to yield consis- 
tency through the fifth virial coefficient. The values of the fourth 
and fifth coefficients resulting from (32) are listed in Table 2, along 
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88 F. L A D 0  AND SHU-HSIA CHEN 

with the corresponding results of the PY, HNC, and PC equations 
given by Rowlinson.(16) As mentioned earlier, the fourth virial 
coefficient is now exact, while the fifth is clearly an improvement 
over the other three equations. 

TABLE 2 Fourth and Fifth Virial Coefficients 
for Hard Spheres. 

Exact 0.28695 0.1103 
Eq. (30) 0.28695 0.1051 
PC 0.2824 0.1041 
PY V 0.2500 0.0859 

C 0.2969 0.1211 
HNC V 0.4453- 0.1447 

C 0.2092 0.0493 

For a dependable comparison at higher densities, a complete 
numerical solution of the integral equation must be obtained. These 
results are presented in the next Section. 

4. Numerical Solufions for Hard Spheres 

The nonlinear integral equation for g which results from Eqs. (12), 
(21), and (30) may be solved iteratively using Fourier transforms. 
The details of the numerical procedure for this calculrttion have been 
described previously.(lSJ*) As before, the equation was solved for g 
in the form 

H ( r )  = r [g( r )  efl'(7) - 11, (33) 
evaluated at a finite number of discrete points r j .  Iteration was 
continued until the largest difference between two successive iterates 
of H was less than In addition, the pressures computed from 
the virial Eq. (2) and from a Simpson's rule integration of the inverse 
compressibility ( 3 )  were required to have a relative difference smaller 
than 5 x 10-4. Calculations were performed in double precision on 
an IBM 360175. 

With these criteria, solutions were obtained for the hard-sphere 
model at reduced densities pa3 = 0.1(0.1)0.8. The computed equation 
of state is listed in Table 3, along with the values obtained from the 
Ree-Hoover P ( 3 , 3 )  approximant(1Q) (which we take as a, reasonable 
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TABLE 3 Hard Sphere Equation of State Computed from the Extended 
Pressure-Consistent Equation (EPC), the RegHoover P(3,3) Pad6 approxi- 
mant (RH), and the earlier Pressure-Consistent Equation (PC). 

BPIP 

0.1 
0.2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 

0.976 
0.953 
0.903 
0.860 
0.826 
0.781 
0.726 
0.680 

1.240 
1.553 
1.967 
2.516 
3.252 
4.252 
5.624 
7.539 

1.240 
1.554 
1.968 
2.521 
3.268 
4.291 
5.714 
7.732 

1.240 
1.553 
1.966 
2.513 
3.246 
4.239 
5.605 
7.513 

" standard solution ") and the earlier pressure-consistent (PC) 
equation.(lS) It is clear from this table that the EPC equation gives 
a, small but noticeable improvement over the earlier version. (These 
latter results in turn have been shown(13) to improve on the PY and 
HNC equation of state.) The values of the density-dependent part 
of m(r) [see Eqs. (30) and (32)] needed to achieve a consistent 
equation of state are tabulated in the second column of Table 3. 
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